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ABSTRACT

U -A summary of results is presented on the subject of damage development in

metal and polymer matrix composite laminates. The following technical

developments are described:

(i) Evaluation of crack densities, stiffness changes, and fiber stresses

caused by cyclic loading in three 6061-0 Ait-B laminates, with 08,

(0/90)2s, and (0/±45/9/o/±45/}90)s layers. This problem is

solved in an incremental way, with regard for interaction between

plastic deformation and matrix crack growth in individual plies.

Saturation damage states are predicted at different levels of steady

cyclic loading. Good comparison is obtained with available experi-

mental datai)
(ii) Analysis of first ply failure in polymer matrix composites. The

influence of ply thickness on strength is predicted in terms of flaw

nucleation mechanisms, ,

(iii) Analysis of distributed damage caused in a composite ply by either

transverse cracks or fiber breaks. Several methods, such as self-

consistent estimates, shear lag approximations, crack array models,

and finite element analysis of cracks in an embedded ply were em-

ployed. It was found that these methods give very similar predic-

tions of stiffness reductions of plies and laminates, and that these

predictions are in good agreement with available experimental data.
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1. INTRODUCTION

I This research project is conducted as a cooperative effort of two inves-

tigators. Dr. George J. Dvorak is the Principal Investigator of the program

at Rensselaer Polytechnic Institute, which is the primary contractor. Dr.

Norman Laws is Principal Investigator of the part of the program subcontracted

from RPI to the University of Pittsburgh.

In the first year of this research program, major accomplishments were

achieved in the following areas:

- mechanics of fatigue damage in metal matrix laminates (Dvorak)

- mechanics of first ply failure in polymer matrix laminates (Dvorak and Laws)

- mechanics of distributed damage caused in a composite ply by either trans-

verse cracks or fiber breaks, and the effect of the damage on behavior of

j laminated plates (Laws and Dvorak).

In addition, significant progress has been made in analysis of damage

caused by propagation of cracks toward, across, and along ply interfaces in

polymer matrix systems.

The principal results are described in the sequel.
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2. STATUS OF THE RESEARCH

2.1 Mechanics of Fatigue Damage in Metal Matrix Composite Laminates

9. Several years ago, Dvorak and Johnson [1] observed that B-AX laminates

may suffer a substantial (, 50%) reduction of stiffness and strength during

cyclic loading well below the endurance limit. A similar effect was found

more recently by Johnson [2] in fibrous SiC-AX laminates and it is now

apparent that metal matrix systems reinforced by monolayers of large diameter

fibers are sensitive to fatigue damage when the matrix is subjected to cyclic

plastic straining during fatigue loading. It is not yet clear that similar

damage occurs in other MMC, e.g., those reinforced by graphite, FP, or other

fibers of very small diameter. In any case, this type of damage is caused by

low cycle fatigue cracks which can grow in off-axis plies on planes parallel

to the fiber axis. Typically, many aligned slit cracks are found in each ply.

They may propagate in the matrix, at the fiber-matrix interface, and, on

occasion, a split fiber may be a part of such a crack. Figure 1 shows various

examples of these cracks in a (0/90/±45) laminate, which were constructed
S

from observations of actual crack systems described in [1, 3-5]. The right

part of this figure, section A-A', shows an in-plane view of a crack in the

900 ply. Since there are no well-defined boundaries between plies, the cracks

extend in the ply thickness direction from one adjacent layer of fibers to

another. For example, the crack in the 90' ply of Figure 1, section AA',

extends between the 00 fibers and the +450 fibers. In each layer these cracks

grow in the direction of fiber axis, hence the crack planes have different

orientation in each layer. On the boundaries between layers the cracks inter-

sect.

2
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It should be emphasized that the type of damage shown in Figure 1 can

exist only when the matrix cracks do not propagate into the fibers, except for

infrequent splits and breaks. This is the case in 6061-A. matrix reinforced

- by boron or SiC fibers, providing that the matrix is overaged, as-fabricated,

or in T4 temper. Results obtained on composites with hardened (T6) matrices

suggest that matrix cracks may break many fibers and as a result, the fatigue

strength of these composites is very low.

The damage process shown in Figure 1 was modelled on the basis of the

*' following premises:

a) Cracks grow in a ply when the matrix experiences cyclic plastic
straining. Monotonic plastic straining does not cause damage. When
the undamaged composite is loaded within its shakedown limit, i.e.,
where the matrix is strained elastically, no damage takes place.
This was indicated by experiments in [1].

b) When, as a result of matrix cracking, the crack accommodation strain
replaces the cyclic plastic strain, the matrix or ply ligaments

I between the cracks return to elastic state. If this happens in all
plies, the cracked composite reaches a shakedown state. Damage
accumulation stops. A saturation damage state is observed in
experiments.

Figure 2 shows an example of saturation damage states reached at differ-

ent levels of maximum cyclic stress Smax, for R = Smin/Smax = 0.1, in B-Ak

. plate specimens. The change in the elastic modulus of the specimen, measured

at unloading from Smax, was used as an overall measure of damage in the plate.

Figure 3 is a collection of experimental points, each representing a saturation

" damage state. It also shows a comparison between the experimentally deter-

mined "damage limit" and the calculated shakedown limit of the composite plate

-,; specimen.

On the basis of these premises, we posed the problem to find crack

density in each plastically strained ply such that the composite laminate

.- reaches an elastic state under the applied cyclic load. This elastic state

3



should be identical with the experimentally observed saturation damage state

at the same load cycle.

The model of this damage process was developed from several components,

and in several steps. First, the actual loading problem was replaced by an

equivalent one. In an experiment each specimen is loaded in a certain

constant cyclic range, SmaxSmin. Initially, the composite deforms
y c rn,

plastically, cracks start to grow after 5U,OUU cycles or so, then cracking and

plastic straining coexist until the saturation state is reached after 5UU,OOU

or more cycles. The equivalent problem was formulated in such a way that the

composite was first cycled to a steady state between Smax and Smin. Then, the

loading range was reduced to an elastic range containing Smin. Next, an

increment of load was applied simultaneously with an increment in crack

density, and the composite was loaded by several plastic cycles to a new

U steady state. This incremental process was repeated until the entire load

range, Smax-Smin was accommodated. The final damage states reached in both

the actual and equivalent loading problems should be identical. This can be

* ascertained on the basis of fatigue experiments under variable load [1, 2]

which show that the stiffness loss in the saturation damage state depends only

on the final stress range, and that the same stiffness loss can be reached

either at constant range, or when the range is expanded incrementally, as in

the equivalent problem.

To analyse the equivalent problem, we utilized both plasticity and damage

analysis of laminated composite plates. The plasticity theory was developed

earlier by Dvorak and Bahei-El-Din [6, 7], in stress space, and by Wung and

Uvorak [8] for strain space applications which arose in the present problem.

The self-consistent damage theory of cracked plies [9, 10], as well as a new

- theory which takes into consideration cyclic plastic straining at cracks were

4
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utilized in damage analysis.

Results are shown in Figures 4 to 12. For simplicity, we use the

(0/90) layup in this illustration. Figure 4 shows the initial relaxation
s

surfaces of the plies of the crossply laminate in the overall strain space

where the e is the laminate strain in 0° direction. Each relaxation surface33

is described by an equation of the type [8]

"?2 T T 2
g 2G (- A) a C A ( : 0 (1)

m me me -

where G is the matrix shear modulus, c is the overall strain vector (6x1), B
m -

is the position of the current center of the surface in - space, A is the
- me

elastic matrix strain concentration factor (6x6), which relates overall uniform

strain c and average of the elastic matrix strain e in a given ply;
--ne

e A E, (2)
-me me -

and C is a (6x6) constant matrix; K is the matrix yield stress in simple shear.

PNow, when cracks are added, the concentration factors in the ligaments

between cracks are reduced, because a part of the overall strain is now taken

up by cracks. As a result, the A for the matrix within these ligaments are
me

also reduced, and the surface (1) expands in the -E space. Figure 5 shows an

example for the 9 0 ply of our crossply laminate. The expansion of the

surface may take place only when the cracks are open, i.e., it affects only

the tension branch of the surface in the c direction which coincides with
33

the crack opening strain. The crack density is measured by a constant a de-

fined as a = 2an, where 2a is ply thickness (in mm), and n is the number of

icracks in the ply per 1 mm of ply length. At a 1, the average distance

between the cracks is equal to 2a. Similarly expanded relaxation surfaces can

N -



be found for the 00 ply.

When the laminate is loaded into the plastic region, the relaxation

surfaces are translated to contain the prescribed loading path. Figures 6-8

show these translations for undamaged laminate. Figure 8 indicates that

steady state response of the laminate can be reached after the second cycle of

loading. In general this is observed in both damaged and undamaged laminates

after few loading cycles.

In the modelling procedure, the actual loading - constant cyclic load

was replaced by incremental cyclic loading which eventually attains the

amplitude applied in experiments. The composite laminate was first loaded to

the maximum stress of the actual cycle, then to the minimum stress, and the

incremental cyclic loading sequence was applied so that the minimum stress wasy"

always included in the incremental cycle.

In the plasticity part of the damage analysis, the composite was first

brought to a steady state that is actually reached in experiments after sev-

eral cycles. Initially, this was a shakedown state in an undamaged composite.

Next, an increment of load was applied, and at the same time an increment in

crack density was allowed in each ply that would be loaded plastically during

the new load cycle. A new shakedown state was found for this level of damage.

This incremental procedure was repeated until the entire prescribed load cycle

was absorbed. In the final saturation state the composite is in a shakedown

state, the plastic strains which were originally applied to the material are

accommodated by opening and closing of cracks.

Ouring the incremental loading process, the relaxation surfaces expand to

accommodate the loading path, and they also translate in such a way that the

path always coincides with the largest "diameter" of each surface. This is a

consequence of cyclic plastic straining to a steady state, which is performed

6
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between crack increments. In other words, the conosite experiences maximum

possible amount of cyclic nlastic straining and it also contains a minimum

amount of cracks which are necessary to reach a given saturation damage state.

Figures 9 and 10 show these expanded surfaces at two levels of Smax.

This analysis was performed for three different B-At laminate layups.

Figure 11 indicates the results obtained for 08 and (0/ 9 0 )2s laminates. The

loss of unloading elastic modulus in saturation damage state is plotted as

function of applied stress range. Experimental results reported in [1, 2] are

shown for conarison. Figure 12 shows similar results for the laminate dis-

cussed in connection with Figures 2 and 3. The experimental data in Fig. 12

were taken from Figure 3.

Finally, Figure 13 indicates the changes in 00 fiber stresses as a func-

tion of damage, which is represented by the magnitude of reduction of elastic

B modulus in saturation damage state. The calculated maximum stress reached in

the 00 fibers is also shown in the figure for each laminate. We note that the

0 and (0/9U) plates were from one batch of material, which was apparently
8 2s

weaker, while the 15-layer plate was from another batch of stronger material.

The conclusion one can obtain from these data and theoretical predictions

is that the laminate endurance limit is reached when the fiber stresses in the

0' ply reach a value which is equal to cyclic fiber strength. Damage has a

strong effect both on stiffness and strength of the laminates. These results

will appear in complete form in the forthcoming Ph.D. dissertation by Mr. C.J.

Wung.

2.2 Mechanics of First Ply Failure

-. In this study, the mechanics of crack initiation in an elastic fibrous

ply was explored. Cracks were assumed to initiate from a nucleus created by

S 7
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localized fiber debonding and matrix cracking. Conditions for onset of

unstable cracking from such nuclei were evaluated with regard to interaction

of cracks with adjacent plies of different elastic properties. It was found

that cracks may propagate in two directions on planes which are parallel to

the fiber axis and perpendicular to the midplane of the ply. It was found

that crack propagation in the direction of the fiber axis controls the

strength of thin plies, while cracking in the direction perpendicular to the

fiber axis determines the strength of thick plies. The theory relates ply

thickness, crack geometry, and ply toughness to ply strength. It predicts a

significant increase in strength with decreasing ply thickness in constrained

thin plies. The strength of thick plies was found to be constant, but it

could be reduced by preexisting damage. Strength of plies of intermediate

thickness, and of unconstrained thick plies was evaluated as well.

While the theory is applicable at any crack density, it was compared with

experiments performed at low crack densities. Figures 14 and lb show compari-

sons of the theory with experimental data obtained for first ply failure in

900 plies of different thicknesses. The theory predicts two different strength

curves. First, for thin plies one obtains the steep curves shown in the two

figures. The equation of this curve is

:",0 112

(22)cr = [4GIc(L)/7 I A22aJ (3)

where ("22)cr is the transverse ply strength, GIc(L) is ply toughness for the

case of crack propagation in the fiber direction, Ei<1 is a coefficient which

describes the reduction of crack energy caused by interaction of the crack

0
with an adjacent ply, A2 2 is the relevant component of the crack tensor ob-

tained in [10] and 2a is ply thickness. Second, for thick plies one obtains

8
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the prediction that the fracture stress is constant, and given by

[Ii()i 0 1/2 (
(G22)cr = [2Glc(T)lw A22 Ic(T) (4)

r" where GIc(T) is the ply toughness for a crack propagating in the direction

perpendicular to the fiber axis, and 61c(T) is the critical width of the

initial flaw.

In practice, GIc(T) and Sic(T) may not be known, and the strength of

thick plies oust be measured experimentally. However, (4) predicts that it is

constant. If initial damage is present such that 2 6ic(T) = 2a, then the

Nstrength of thick plies is reduced to that given by (3), at large values of a.

A complete description of these results is given in [11, 12].

2.3 Distributed Oamage in a Ply

In our work on distributed damage in a ply, attention was focused on the

loss of stiffness of the laminate and on progressive cracking of the

transverse ply. As far as loss of stiffness is concerned, our aim has been to

analyze the problem for transverse cracks and to treat the problem without the

introduction of additional material parameters (as for example in the internal

variable approach). In particular we have developed the self-consistent model

[9-11, 13-1b] and this technique appears to be adequate in practice.

We have also compared the self-consistent model with the work of

Delameter, Herrmann and Barnett [16, 17]. These latter authors addressed some

problems associated with a periodic two-dimensional distribution of aligned

cracks in an infinite solid. The geometry assumed by Delameter, Herrmann and

Barnett has long-range order. On the other hand the self-consistent model

assumes a random distribution of cracks. Nevertheless it is possible to

compare the two approaches. It is significant that there is good agreement.' 9
• " W . " q . -' ' -' ; "" """" ""w , . '' 7 # '""' - ' '. - '' . ' N"• .s ' > ". " 
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In addition we have used shear lag theory to estimate the loss of stiff-

ness of cracked laminates. However it must be emphasized that the original

version of shear lag as it applies to cross-ply laminates [18, 19] contains

numerous mistakes. In fact, some effort was required to provide a simple clear

basis for shear lag theory. Once the required framework had been established,

it was possible to do the necessary stress analysis. Of course, it is well

known that shear lag theory involves one additional constant. But it is

possible to give an easy way of finding the shear lag parameter from existing

data. With this information one can easily calculate the shear lag prediciton

of the loss of stiffness. It is quite remarkable that all these methodologies
U

are in good agreement amongst themselves and with experiment. Thus from a

practical point of view either the self-consistent or shear lag models are to

be preferred because of their simplicity.

A further bonus in our analysis of the various models emerged when we com-

pared Shear lag theory with some finite element calculations. Indeed our anal-

ysis indicates that shear lag gives quite acceptable results for the stresses

(and strains) except in the immediate vicinity of the crack surfaces. And this

explains why shear lag gives a reasonable prediction for loss of stiffness.

A significant achievement of the last year has been the formulation of a

good analytical model for progressive cracking in cross ply composite laminates.

In the first place the work of the two P.I's - described elsewhere -provides a

simple approach to first ply failure. At the time of writing, this approach

has not been extended to handle progressive cracking. Accordingly an alterna-

tive simple model for progressive cracking was sought [20]. It turns out that

shear lag theory which must be the simplest possible model coupled with

statistical fracture mechanics gives some particularly useful results. It is

perhaps important to emphasize that the proposed progressive cracking model

--. 10
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has little in common with the earlier models of Bailey and his co-workers [18,
* 19].

The work on damage propagation across and along ply interfaces has been

extensive. The most comprehensive stress analysis of this sort of problem

has been undertaken by Erdogan and a succession of students [21, 22 and the re-

ferences contained therein]. As far as this project is concerned a major dif-

ficulty is due to the fact that the specific geometries which are encountered

in transverse ply cracking have not been reported in the literature. Further,

it is not possible to obtain from the published literature any comprehensive

results which are particularly relevant to cross-ply graphite-epoxy laminates.

In order to provide the required computer algorithms, and thus an extensive

data base, a succession of problems of gradually increasing complexity has

been analyzed. For some model problems the results obtained have been in

j complete agreement with published work. But for other, more difficult,

problems we have been unable to reproduce some of the published results. At

this time it is not possible to identify the difficulties with precision and

thus arrive at definitive answers. However, it can be mentioned that we have

attempted several problems using the analytical techniques developed by

Erdogan and his students [21, 22]. So far our attempts have been unsuccess-

ful. It is fair to summarize our current position by noting that we are

unable to get convergence of the recommended algorithms. The source of the

problem is not clear at the time of writing.

In order to get some additional insight into these problems, we obtained

some finite element solutions of the model problems. The solutions were ob-

tained by a straightforward application of the standard ABAQUS code. This

choice was determined by the fact that we needed to use a well understood,

reliable program.

~~a ~ ~ N- low - '~ ~~ *
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Ubviously this problem area is under intense study. Future reports can

3 be expected to contain precise scientific assessments of the various issues.

By way of contrast, it is pleasing to be able to report good progress in

the study of crack growth across the ply interface into an adjacent ply. This

process often causes fiber breaks in the next ply and contributes significantly

to ply damage and to stiffness loss. To solve this problem, it was necessary

first to calcuate interaction energies and crack opening displacements for

cracks perpendicular to fibers: Laws [23]. These results have been incorpo-

rated into stiffness change calculations [24]. In addition to the determin-

ation of self-consistent models, we have also investigated the appropriate

Hashin-Shtrikman bounds [24]. As ever, the self-consistent model lies within

the bounds. Also some results for energy releases rates have been obtained.
4.

We are also examining the possibility of modeling the crack extension

across an interface with the help of discrete L)ugdale-type zones.

Finally, we discuss the work in progress on the effect of damage on the

behavior of laminated plates. Here we are concentrating on the modeling of

extensively damaged regions. The formulation of constitutive equations for

plies containing extensive matrix damage has been completed. Also fiber

damage resulting in cracks perpendicular to the fiber has been analyzed. In

addition, we have done some assessment of the propagation of damage in a

laminate. Initial damage zones (due to impact or projectiles) extending

through the thickness of the laminate were considered. On the basis of these

preliminary studies, it is clear that problems associated with the spread of

damage from extensively damaged regions are not easily solved. This is a

major problem area in our continuing work.

12
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3. SIGNIFICANT ACHIEVEMENTSI
Important technical results have been obtained in analysis of damage both

in metal and polymer matrix composites. The results reported in Section 2.1

above highlight the achievements in analysis of fatigue damage in fibrous

metal matrix systems. In this case the damage process is quite complex, not

only in terms of crack geometry, but also because of the interaction of

plastic deformation and cracking during cyclic loading. Modelling of the

process was made possible by formulation of a different, equivalent problem.

However, the most significant factor in the success of the procedure was that

jwe set out to model the terminal state of damage, i.e., the saturation damage

state. No attempt was made to follow evolution of damage through the initial

accumulation stage of 5U0,000 cycles or so, which is of limited practical

significance but which involves complex deformation and cracking processes.

Oamage processes in polymer matrix systems were analysed in several ways.

First, the analysis of first ply failure clarified the conditions which govern

nucleation and propagation of individual cracks in a polymer matrix fibrous

ply. These conditions are valid not only for the first crack, but also for

all subsequent cracks, providing that the local stresses acting on the new

crack nucleus are properly evaluated. Therefore, we are now in the position

to connect progressive cracking in a composite ply to material properties such

as ply toughness, and ply elastic properties, to ply thickness, laminate

* geometry, and to initial flaw size.

Our efforts in analysis of progressive cracking of a fibrous ply have

produced additional technical achievements. As a part of this effort, we

compared various crack array models in terms of their predictions of stiffness

reduction in a cracked ply. The self-consistent model [9, 10] was compared

4s 13
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with the two-dimensional periodic array results [16, 17] and also with

rederived shear lay model results [20]. In these comparisons we considered

the composite laminate geometry shown in Figure 16. The longitudinal and

transverse Young's moduli for the unbroken plies are E and E respectively.
I t

Also E is the Young's modulus for the uncracked laminate (in the directiono

of the fibers of the 00 plies).

NA useful test of the self-consistent model can be obtained by comparison

with the work of Delameter, Herrmann and Barnett [16, 17]. These authors con-

sider a two-dimensional periodic array of cracks in an isotropic solid and,

amongst other things, calculate the associated loss of stiffness. Our self-

consistent results given in [14] refer specifically to laminates with the

following lay-ups:

(U /9U) ,(0 /U) (0/90) ,(0/0).
4 s 3 2s 2 3s 4s

It is simple enough to extract the required reductions in stiffness from [17]

and compare the results with the self-consistent model, see Table 1. Whilst

the comparison is remarkably good, it is not decisive since Lelameter,

Herrmann and Barnett [17] only consider isotropic solids.

It is reassuring to have agreement between the self-consistent model and

the Oelameter, Herrmann, Barnett analysis, but it is surely more important to

compare the respective models with experiment. A major difficulty is the/-I

sparsity of experimental evidence on the relationship between stiffness loss

and crack density. However, the effectiveness of the self-consistent model in

predicting the experimental results of Highsmith et al. [24] is shown in Figure

17. We note that Figure 17 also includes the prediction of shear lag theory.

It is useful to record that shear lag theory gives the following formula for

14



the reduction in stiffness [20]

EEt 2dX -1- ( 1 + tanh
2AbO

The parameter X is the so-called shear lag parameter, but for practical pur-

poses is best handled in the form (Ad), which is dimensionless. For typical

composites 0.5 < Xd < 1.5. In fact for the (0, 90 ) E-glass epoxy laminates
3 s

studied by Highsmith et al. [24], Ad = 0.8.

A significant achievement has been to use shear lag theory to predict

progressive crack density as a function of applied loads [20]. Clearly such

an analysis must take into account initial stresses. Accordingly the model

has been formulated and solved. The process of transverse cracking can be

followed in several ways. In the first place it is easy to show that the( fpf

applied stress at first ply failure (a ) may be found in terms of the
a

critical energy release rate G and the other parameters from
c

fpf XbE#EoGc 1/2 E0  R
a f  (b+d)Et } t- at

R°I

'.4 where a is the residual stress due to cool-down in the transverse ply. If we
'.4' t r

are given the usual data then the preceding formula provides a relationship
fpf fpf

between a , and G . Thus given X and G we could predict a . However,
a c c fpf a

at the present time it is more appealing to regard a and G as given, hence
a c

we can determine A or, more usefully, (Ad). q

As for subsequent cracking, a major complication arises because the

location of the next crack cannot be obtained by deterministic methods. I
Physically it is clear that, for a given cracked laminate, there is no way of

determining the location of the next crack. Rather, we must proceed on a
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statistical basis. Referring to Figure 18, suppose that in a laminate with

g transverse crack density s, existing neighboring cracks are at A and 8. Then

the next crack to occur between A and B will occur at some location C. Thus

let p(y) be the appropriate probability density function for the site of the

next crack: in other words the probability that the next crack will appear

between locations y and (y + dy) is just p(y)dy. Thus if a (y) is the applied,. a,

stress to cause the next crack to appear at location y, the expected value of

the applied stress to cause a laminate with crack density a to undergo

additional cracking is

2h_

E(o ) =f p(y)a (y)dy
a a

where

faY = ( Pf E° 2d kd -i/2

a(Y) + {tanh + tanh 2d - y) - tanh -1

E° R

The choice of probability density function is crucial and unknown. One

extreme would be to assume the next crack to occur at the mid-point of the

seygment, thus giving

p(y) = 6(y - h)

where 6(y) is the Uirac delta function. The other extreme would be to assume

that all locations in the ligament are equally likely, giving

P(Y) 1 I

2h

16



But a more appealing hypothesis, based on simple fracture mechanics, would be

to assume that p(y) is proportional to the stress in the transverse ply:

P(Y) a a (Y)
5%' t

For the (0/90 ) E-glass reinforced plastic laminates studied by

Highsmith et al. [24], the data demands that

)Xd =:0.8.

Comparison between theory and experiment is shown in Figure 19.

In addition we have used some of the extensive data compiled by Wang et

al. reported in [25] for T3UU/934 graphite epoxy laminates results are shown

in Figures 20 and 21.

Bearing in mind that the above-mentioned shear lag theory must be the

simplest possible theory of transverse cracking, it is remarkable that the use

of a statistical fracture mechanics approach is as accurate as indicated in

Figures 19, 2 and 21.

Turning now to the reduction in stiffness due to fiber breaks, it is in-

appropriate to give here any details of the analysis. But in order to give

any information it is necessary to identify the appropriate crack density a.

Thus let N be the number of fiber breaks per unit volume and let a be the

radius of the resulting penny-shaped crack at the broken end, then

3
a = 8Na

• ,In order to determine the loss in stiffness due to fiber breaks, it was first

essential to calculate the interaction energy for a penny-shaped crack in a

transversely isotropic material. This was done in [23]. It was then reason-
".. ably straightforward to obtain the self-consistent model and the corresponding

17
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Hashin-Shtrikman bounds etc. The loss in Young's modulus (EL) parallel to the

fibers (and perpendicular to the cracks) is shown in Figure 22. Likewise the

reduction in the longitudinal shear modulus is shown in Figure 23. We have

12 computed all the necessary physical parameters, including energy release
rates. The details are too involved to be reported here, but see Laws and

Ovorak (26).

At the present time we have a range of results for stress intensity

factors which have been obtained using ABALQUS. A sample is shown in Figure 24

where the normalized stress intensity factor for a single crack in a (U/90)
s

graphite-epoxy laminate is plotted as a function of (non-dimensional) crack

length. It is not possible to compare this solution with published work since

none of the published work refers to the problem in hand. To be more precise,

published work refers to laminates with constrained upper and lower surfaces

* whereas the real problem which is needed here concerns free upper and lower

surfaces.

4. Clearly this subject is under intensive study. A complete analysis will

* be forthcoming in future reports.
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0.1 -0.3 8-0.5

SCM SCM SCM

DHB, DHB DMB

'; (04. 90)s 98 93 89

97 94 90

(0, 902)s 95 85 77

94 85 78

(0 903)s 92 77 65

91 77 64

(0, 904)s 90 70 53

85 66 54

Table 1: The predicted remaining % of the initial stiffness at the indicated
crack densities according to the Delameter, Herrmann, Barnett [9]
analysis and the self-consistent model.
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